Korelasi merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran asosiasi atau hubungan (measures of association). Pengukuran asosiasi merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel. Diantara sekian banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan Korelasi Rank Spearman.
Pengukuran asosiasi mengenakan nilai numerik untuk mengetahui tingkatan asosiasi atau kekuatan hubungan antara variabel. Dua variabel dikatakan berasosiasi jika perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi pengaruh, maka kedua variabel tersebut disebut independen.
Korelasi bermanfaat untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala-skala tertentu, misalnya Pearson data harus berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal; Chi Square menggunakan data nominal. Kuat lemah hubungan diukur diantara jarak (range) 0 sampai dengan 1.
Korelasi mempunyai kemungkinan pengujian hipotesis dua arah (two tailed). Korelasi searah jika nilai koefesien korelasi diketemukan positif; sebaliknya jika nilai koefesien korelasi negatif, korelasi disebut tidak searah. Yang dimaksud dengan koefesien korelasi adalah suatu pengukuran statistik kovariasi atau asosiasi antara dua variabel.
Jika terdapat koefesien korelasi tidak sama dengan nol (0), maka terdapat ketergantungan antara dua variabel tersebut. Jika didapatkan koefesien korelasi +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) positif. Jika didapatkan koefesien korelasi -1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) negatif.
Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis, karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut. Dalam korelasi sebenarnya tidak dikenal istilah variabel bebas (independent) dan variabel tergantung (dependant). Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y untuk variabel kedua. Pengukuran ini menunjukan hubungan antara dua variabel untuk masing-masing kasus akan menghasilkan keputusan, diantaranya:
- Hubungan kedua variabel tidak ada
- Hubungan kedua variabel lemah
- Hubungan kedua variabel cukup lemah
- Hubungan kedua variabel cukup kuat
- Hubungan kedua variabel kuat
Teori Korelasi dan Kausalitas
Ada perbedaan mendasar antara korelasi dan kausalitas. Jika kedua variabel dikatakan berkorelasi, maka kita tergoda untuk mengatakan bahwa variabel yang satu mempengaruhi variabel yang lain atau dengan kata lain terdapat hubungan kausalitas. Kenyataannya belum tentu. Hubungan kausalitas terjadi jika variabel X mempengaruhi Y. Jika kedua variabel diperlakukan secara simetris (nilai pengukuran tetap sama seandainya peranan variabel-variabel tersebut ditukar) maka meski kedua variabel berkorelasi tidak dapat dikatakan mempunyai hubungan kausalitas. Dengan demikian, jika terdapat dua variabel yang berkorelasi, tidak harus terdapat hubungan kausalitas.Terdapat paradigma yang mengatakan “correlation does not imply causation”. Artinya korelasi tidak dapat digunakan secara valid untuk melihat adanya hubungan kausalitas dalam variabel-variabel. Dalam korelasi aspek-aspek yang melandasi terdapatnya hubungan antar variabel mungkin tidak diketahui atau tidak langsung. Oleh karena itu dengan menetapkan korelasi dalam hubungannya dengan variabel-variabel yang diteliti tidak akan memberikan persyaratan yang memadai untuk menetapkan hubungan kausalitas kedalam variabel-variabel tersebut. Sekalipun demikian bukan berarti bahwa korelasi tidak dapat digunakan sebagai indikasi adanya hubungan kausalitas antar variabel. Korelasi dapat digunakan sebagai salah satu bukti adanya kemungkinan terdapatnya hubungan kausalitas tetapi tidak dapat memberikan indikasi hubungan kausalitas seperti apa jika memang itu terjadi dalam variabel-variabel yang diteliti, misalnya model recursive, dimana X mempengaruhi Y atau non-recursive, misalnya X mempengaruhi Y dan Y mempengaruhi X.
Dengan untuk mengidentifikasi hubungan kausalitas tidak dapat begitu saja dilihat dengan kaca mata korelasi tetapi sebaiknya menggunakan model- model yang lebih tepat, misalnya regresi, analisis jalur atau structural equation model.